Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
2.
BMC Psychol ; 12(1): 137, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475925

RESUMO

BACKGROUND: 16p11.2 proximal deletion and duplication syndromes (Break points 4-5) (593KB, Chr16; 29.6-30.2mb - HG38) are observed to have highly varied phenotypes, with a known propensity for lifelong psychiatric problems. This study aimed to contribute to a research gap by qualitatively exploring the challenges families with 16p11.2 deletion and duplication face by answering three research questions: (1) What are parents' perceptions of the ongoing support needs of families with children who have 16p11.2 living in the UK?; (2) What are their experiences in trying to access support?; (3) In these regards, do the experiences of parents of children with duplication converge or vary from those of parents of children with 16p11.2 deletion? METHODS: 33 parents with children (aged 7-17 years) with 16p11.2 deletion or duplication participated in structured interviews, including the Autism Diagnostic Interview- Revised (ADI-R). Their answers to the ADI-R question 'what are your current concerns' were transcribed and subsequently analysed using Braun and Clarke's six step reflexive thematic analysis framework. RESULTS: Three themes were identified: (1) Child is Behind Peers (subthemes: developmentally; academically; socially; emotionally); (2) Metabolism and Eating Patterns and; (3) Support (subthemes: insufficient support available; parent has to fight to access support; COVID-19 was a barrier to accessing support; 16p11.2 diagnosis can be a barrier to support, child is well-supported). CONCLUSIONS: Parents of children with either 16p11.2 deletion or duplication shared similar experiences. However, metabolism concerns were specific to parents of children with 16p11.2 deletion. The theme Child is Behind Peers echoed concerns raised in previous Neurodevelopmental Copy Number Variant research. However, there were some key subthemes relating to research question (2) which were specific to this study. This included parents' descriptions of diagnostic overshadowing and the impact of a lack of eponymous name and scant awareness of 16p11.2.


Assuntos
Transtorno Autístico , Deleção Cromossômica , Criança , Humanos , Transtorno Autístico/genética , Pais
3.
Nat Commun ; 15(1): 2639, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531844

RESUMO

Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Humanos , Lateralidade Funcional , Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética
4.
Neuropsychopharmacology ; 49(2): 368-376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37402765

RESUMO

Although many genetic risk factors for psychiatric and neurodevelopmental disorders have been identified, the neurobiological route from genetic risk to neuropsychiatric outcome remains unclear. 22q11.2 deletion syndrome (22q11.2DS) is a copy number variant (CNV) syndrome associated with high rates of neurodevelopmental and psychiatric disorders including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia. Alterations in neural integration and cortical connectivity have been linked to the spectrum of neuropsychiatric disorders seen in 22q11.2DS and may be a mechanism by which the CNV acts to increase risk. In this study, magnetoencephalography (MEG) was used to investigate electrophysiological markers of local and global network function in 34 children with 22q11.2DS and 25 controls aged 10-17 years old. Resting-state oscillatory activity and functional connectivity across six frequency bands were compared between groups. Regression analyses were used to explore the relationships between these measures, neurodevelopmental symptoms and IQ. Children with 22q11.2DS had altered network activity and connectivity in high and low frequency bands, reflecting modified local and long-range cortical circuitry. Alpha and theta band connectivity were negatively associated with ASD symptoms while frontal high frequency (gamma band) activity was positively associated with ASD symptoms. Alpha band activity was positively associated with cognitive ability. These findings suggest that haploinsufficiency at the 22q11.2 locus impacts short and long-range cortical circuits, which could be a mechanism underlying neurodevelopmental and psychiatric vulnerability in this high-risk group.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Síndrome de DiGeorge , Criança , Humanos , Adolescente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/complicações , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/complicações , Síndrome de DiGeorge/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Cognição , Fatores de Risco
5.
medRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106165

RESUMO

Background: A range of rare mutations involving micro-deletion or -duplication of genetic material (copy number variants (CNVs)) have been associated with high neurodevelopmental and psychiatric risk (ND-CNVs). Irritability is frequently observed in childhood neurodevelopmental conditions, yet its aetiology is largely unknown. Genetic variation may play a role, but there is a sparsity of studies investigating presentation of irritability in young people with ND-CNVs. Aims: This study aimed to investigate whether there is a difference in irritability in young people with rare ND-CNVs compared to those without ND-CNVs, and to what extent irritability is associated with psychiatric diagnoses and cognitive ability (IQ). Methods: Irritability and broader psychopathology was assessed in 485 young people with ND-CNVs and 164 sibling controls, using the child and adolescent psychiatric assessment (CAPA). Autism was assessed using the Social Communication Questionnaire (SCQ), and Intelligence Quotient (IQ) by the Wechsler Abbreviated Scale of Intelligence (WASI). Results: 54% of young people with ND-CNVs met the threshold for irritability; significantly more than controls (OR = 3.77, CI = 3.07-7.90, p= 5.31 × 10-11). When controlling for the presence of other psychiatric comorbidities, ND-CNV status was still associated with irritability. There was no evidence for a relationship between irritability and IQ. Conclusions: Irritability is an important aspect of the clinical picture in young people with ND-CNVs. This work shows that genetic variation is associated with irritability in young people with ND-CNVs, independent of psychiatric comorbidities or IQ impairment. Clinicians should be aware of this increased risk to inform management and interventions.

6.
JCPP Adv ; 3(2): e12162, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37753151

RESUMO

Background: Individuals with 22q11.2 deletion are at considerably increased risk of neurodevelopmental and psychiatric conditions. There have been very few studies investigating how this risk manifests in early childhood and what factors may underlie developmental variability. Insights into this can elucidate transdiagnostic markers of risk that may underlie later development of neuropsychiatric outcomes. Methods: Thirty two children with 22q11.2 Deletion Syndrome (22q11.2DS) (mean age = 4.1 [SD = 1.2] years) and 12 sibling controls (mean age = 4.1 [SD = 1.5] years) underwent in-depth dimensional phenotyping across several developmental domains selected as being potential early indicators of neurodevelopmental and psychiatric liability. Comparisons were conducted of the dimensional developmental phenotype of 22q11.2DS and sibling controls. For autistic traits, both parents and children were phenotyped using the Social Responsiveness Scale. Results: Young children with 22q11.2DS exhibited large impairments (Hedge's g ≥ 0.8) across a range of developmental domains relative to sibling controls, as well as high rates of transdiagnostic neurodevelopmental and psychiatric traits. Cluster analysis revealed a subgroup of children with 22q11.2DS (n = 16; 53%) in whom neurodevelopmental and psychiatric liability was particularly increased and who differed from other children with 22q11.2DS and non-carrier siblings. Exploratory analyses revealed that early motor and sleep impairments indexed liability for neurodevelopmental and psychiatric outcomes. Maternal autism trait scores were predictive of autism traits in children with 22q11.2DS (intraclass correlation coefficients = 0.47, p = 0.046, n = 31). Conclusions: Although psychiatric conditions typically emerge later in adolescence and adulthood in 22q11.2DS, our exploratory study was able to identify a range of early risk indicators. Furthermore, findings indicate the presence of a subgroup who appeared to have increased neurodevelopmental and psychiatric liability. Our findings highlight the scope for future studies of early risk mechanisms and early intervention within this high genetic risk patient group.

7.
Am J Psychiatry ; 180(9): 685-698, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37434504

RESUMO

OBJECTIVE: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs), including autism (ASD) and schizophrenia. Little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, the authors investigated gross volume, vertex-level thickness, and surface maps of subcortical structures in 11 CNVs and six NPDs. METHODS: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (CNVs at 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2; age range, 6-80 years; 340 males) and 782 control subjects (age range, 6-80 years; 387 males) as well as ENIGMA summary statistics for ASD, schizophrenia, attention deficit hyperactivity disorder, obsessive-compulsive disorder, bipolar disorder, and major depression. RESULTS: All CNVs showed alterations in at least one subcortical measure. Each structure was affected by at least two CNVs, and the hippocampus and amygdala were affected by five. Shape analyses detected subregional alterations that were averaged out in volume analyses. A common latent dimension was identified, characterized by opposing effects on the hippocampus/amygdala and putamen/pallidum, across CNVs and across NPDs. Effect sizes of CNVs on subcortical volume, thickness, and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and schizophrenia. CONCLUSIONS: The findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions, as well distinct effects, with some CNVs clustering with adult-onset conditions and others with ASD. These findings provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD and why a single CNV increases the risk for a diverse set of NPDs.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Esquizofrenia , Masculino , Adulto , Humanos , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Variações do Número de Cópias de DNA/genética , Esquizofrenia/genética , Encéfalo/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/genética , Genômica
8.
NPJ Genom Med ; 8(1): 17, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463940

RESUMO

Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHD.

9.
Mol Psychiatry ; 28(10): 4342-4352, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37495890

RESUMO

22q11.2 deletion syndrome, or 22q11.2DS, is a genetic syndrome associated with high rates of schizophrenia and autism spectrum disorders, in addition to widespread structural and functional abnormalities throughout the brain. Experimental animal models have identified neuronal connectivity deficits, e.g., decreased axonal length and complexity of axonal branching, as a primary mechanism underlying atypical brain development in 22q11.2DS. However, it is still unclear whether deficits in axonal morphology can also be observed in people with 22q11.2DS. Here, we provide an unparalleled in vivo characterization of white matter microstructure in participants with 22q11.2DS (12-15 years) and those undergoing typical development (8-18 years) using a customized magnetic resonance imaging scanner which is sensitive to axonal morphology. A rich array of diffusion MRI metrics are extracted to present microstructural profiles of typical and atypical white matter development, and provide new evidence of connectivity differences in individuals with 22q11.2DS. A recent, large-scale consortium study of 22q11.2DS identified higher diffusion anisotropy and reduced overall diffusion mobility of water as hallmark microstructural alterations of white matter in individuals across a wide age range (6-52 years). We observed similar findings across the white matter tracts included in this study, in addition to identifying deficits in axonal morphology. This, in combination with reduced tract volume measurements, supports the hypothesis that abnormal microstructural connectivity in 22q11.2DS may be mediated by densely packed axons with disproportionately small diameters. Our findings provide insight into the in vivo white matter phenotype of 22q11.2DS, and promote the continued investigation of shared features in neurodevelopmental and psychiatric disorders.


Assuntos
Síndrome de DiGeorge , Esquizofrenia , Substância Branca , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Síndrome de DiGeorge/genética , Imagem de Tensor de Difusão/métodos , Encéfalo
10.
JCPP Adv ; 3(1): e12128, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37431317

RESUMO

Background: Many children with an intellectual or developmental disability (IDD) have associated autism spectrum disorders (ASD), as well as an increased risk of mental health difficulties. In a cohort with IDD of genetic aetiology, we tested the hypothesis that excess risk attached to those with ASD + IDD, in terms of both children's mental health and parental psychological distress. Methods: Participants with a copy number variant or single nucleotide variant (5-19 years) were recruited via UK National Health Service. 1904 caregivers competed an online assessment of child mental health and reported on their own psychological wellbeing. We used regression to examine the association between IDD with and without co-occurring ASD, and co-occurring mental health difficulties, as well as with parental psychological distress. We adjusted for children's sex, developmental level, physical health, and socio-economic deprivation. Results: Of the 1904 participants with IDD, 701 (36.8%) had co-occurring ASD. Children with both IDD and ASD were at higher risk of associated disorders than those with IDD alone (ADHD: OR = 1.84, 95% confidence interval [CI] 1.46-2.32, p < 0.0001; emotional disorders: OR = 1.85, 95%CI 1.36-2.5, p < 0.0001; disruptive behaviour disorders: OR = 1.79, 95%CI 1.36-2.37, p < 0.0001). The severity of associated symptoms was also greater in those with ASD (hyperactivity: B = 0.25, 95%CI 0.07-0.34, p = 0.006; emotional difficulties: B = 0.91, 95%CI 0.67 to 1.14, p < 0.0001; conduct problems: B = 0.25, 95%CI 0.05 to 0.46, p = 0.013). Parents of children with IDD and ASD also reported greater psychological distress than those with IDD alone (ß = 0.1, 95% CI 0.85 to 2.21, p < 0.0001). Specifically, in those with ASD, symptoms of hyperactivity (ß = 0.13, 95% CI 0.29-0.63, p < 0.0001), emotional difficulties (ß = 0.15, 95% CI 0.26-0.51, p < 0.0001) and conduct difficulties (ß = 0.07, 95% CI 0.07-0.37, p < 0.004) all significantly contributed to parental psychological distress. Conclusions: Among children with IDD of genetic aetiology, one third have co-occurring ASD. Not only do those with co-occurring ASD present with a wider range of associated mental health disorders and more severe mental health difficulties than those with IDD alone, but their parents also experience more psychological distress. Our findings suggest that the additional mental health and behavioural symptoms in those with ASD contributed to the degree of parental psychological distress.

11.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131672

RESUMO

Asymmetry between the left and right brain is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variant studies, which typically exert small effects on brain phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We quantitatively dissected the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior mapping highlights the consequences of genetically controlled brain lateralization on human-defining cognitive traits.

12.
Mol Autism ; 14(1): 19, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221545

RESUMO

BACKGROUND: Genomic conditions can be associated with developmental delay, intellectual disability, autism spectrum disorder, and physical and mental health symptoms. They are individually rare and highly variable in presentation, which limits the use of standard clinical guidelines for diagnosis and treatment. A simple screening tool to identify young people with genomic conditions associated with neurodevelopmental disorders (ND-GCs) who could benefit from further support would be of considerable value. We used machine learning approaches to address this question. METHOD: A total of 493 individuals were included: 389 with a ND-GC, mean age = 9.01, 66% male) and 104 siblings without known genomic conditions (controls, mean age = 10.23, 53% male). Primary carers completed assessments of behavioural, neurodevelopmental and psychiatric symptoms and physical health and development. Machine learning techniques (penalised logistic regression, random forests, support vector machines and artificial neural networks) were used to develop classifiers of ND-GC status and identified limited sets of variables that gave the best classification performance. Exploratory graph analysis was used to understand associations within the final variable set. RESULTS: All machine learning methods identified variable sets giving high classification accuracy (AUROC between 0.883 and 0.915). We identified a subset of 30 variables best discriminating between individuals with ND-GCs and controls which formed 5 dimensions: conduct, separation anxiety, situational anxiety, communication and motor development. LIMITATIONS: This study used cross-sectional data from a cohort study which was imbalanced with respect to ND-GC status. Our model requires validation in independent datasets and with longitudinal follow-up data for validation before clinical application. CONCLUSIONS: In this study, we developed models that identified a compact set of psychiatric and physical health measures that differentiate individuals with a ND-GC from controls and highlight higher-order structure within these measures. This work is a step towards developing a screening instrument to identify young people with ND-GCs who might benefit from further specialist assessment.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Masculino , Humanos , Adolescente , Criança , Feminino , Estudos de Coortes , Estudos Transversais , Genômica , Aprendizado de Máquina
13.
Nat Hum Behav ; 7(6): 1001-1017, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36864136

RESUMO

Copy number variations (CNVs) are rare genomic deletions and duplications that can affect brain and behaviour. Previous reports of CNV pleiotropy imply that they converge on shared mechanisms at some level of pathway cascades, from genes to large-scale neural circuits to the phenome. However, existing studies have primarily examined single CNV loci in small clinical cohorts. It remains unknown, for example, how distinct CNVs escalate vulnerability for the same developmental and psychiatric disorders. Here we quantitatively dissect the associations between brain organization and behavioural differentiation across 8 key CNVs. In 534 CNV carriers, we explored CNV-specific brain morphology patterns. CNVs were characteristic of disparate morphological changes involving multiple large-scale networks. We extensively annotated these CNV-associated patterns with ~1,000 lifestyle indicators through the UK Biobank resource. The resulting phenotypic profiles largely overlap and have body-wide implications, including the cardiovascular, endocrine, skeletal and nervous systems. Our population-level investigation established brain structural divergences and phenotypical convergences of CNVs, with direct relevance to major brain disorders.


Assuntos
Encéfalo , Variações do Número de Cópias de DNA , Humanos , Variações do Número de Cópias de DNA/genética , Encéfalo/diagnóstico por imagem
14.
medRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865328

RESUMO

Objectives: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs) including autism (ASD) and schizophrenia (SZ). Overall, little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, we investigated gross volume, and vertex level thickness and surface maps of subcortical structures in 11 different CNVs and 6 different NPDs. Methods: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (at the following loci: 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2) and 782 controls (Male/Female: 727/730; age-range: 6-80 years) as well as ENIGMA summary-statistics for ASD, SZ, ADHD, Obsessive-Compulsive-Disorder, Bipolar-Disorder, and Major-Depression. Results: Nine of the 11 CNVs affected volume of at least one subcortical structure. The hippocampus and amygdala were affected by five CNVs. Effect sizes of CNVs on subcortical volume, thickness and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and SZ. Shape analyses were able to identify subregional alterations that were averaged out in volume analyses. We identified a common latent dimension - characterized by opposing effects on basal ganglia and limbic structures - across CNVs and across NPDs. Conclusion: Our findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions. We also observed distinct effects with some CNVs clustering with adult conditions while others clustered with ASD. This large cross-CNV and NPDs analysis provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD, as well as why a single CNV increases the risk for a diverse set of NPDs.

15.
BJPsych Open ; 9(2): e32, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752340

RESUMO

BACKGROUND: Current psychiatric diagnoses, although heritable, have not been clearly mapped onto distinct underlying pathogenic processes. The same symptoms often occur in multiple disorders, and a substantial proportion of both genetic and environmental risk factors are shared across disorders. However, the relationship between shared symptoms and shared genetic liability is still poorly understood. AIMS: Well-characterised, cross-disorder samples are needed to investigate this matter, but few currently exist. Our aim is to develop procedures to purposely curate and aggregate genotypic and phenotypic data in psychiatric research. METHOD: As part of the Cardiff MRC Mental Health Data Pathfinder initiative, we have curated and harmonised phenotypic and genetic information from 15 studies to create a new data repository, DRAGON-Data. To date, DRAGON-Data includes over 45 000 individuals: adults and children with neurodevelopmental or psychiatric diagnoses, affected probands within collected families and individuals who carry a known neurodevelopmental risk copy number variant. RESULTS: We have processed the available phenotype information to derive core variables that can be reliably analysed across groups. In addition, all data-sets with genotype information have undergone rigorous quality control, imputation, copy number variant calling and polygenic score generation. CONCLUSIONS: DRAGON-Data combines genetic and non-genetic information, and is available as a resource for research across traditional psychiatric diagnostic categories. Algorithms and pipelines used for data harmonisation are currently publicly available for the scientific community, and an appropriate data-sharing protocol will be developed as part of ongoing projects (DATAMIND) in partnership with Health Data Research UK.

16.
Transl Psychiatry ; 13(1): 7, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631438

RESUMO

Children with rare neurodevelopmental genetic conditions (ND-GCs) are at high risk for a range of neuropsychiatric conditions. Sleep symptomatology may represent a transdiagnostic risk indicator within this patient group. Here we present data from 629 children with ND-GCs, recruited via the United Kingdom's National Health Service medical genetic clinics. Sibling controls (183) were also invited to take part. Detailed assessments were conducted to characterise the sleep phenotype of children with ND-GCs in comparison to controls. Latent class analysis was conducted to derive subgroups of children with an ND-GC based on sleep symptomatology. Assessment of cognition and psychopathology allowed investigation of whether the sleep phenotypic subgroup was associated with neuropsychiatric outcomes. We found that children with an ND-GC, when compared to control siblings, were at elevated risk of insomnia (ND-GC = 41% vs Controls = 17%, p < 0.001) and of experiencing at least one sleep symptom (ND-GC = 66% vs Controls = 39%, p < 0.001). On average, insomnia was found to have an early onset (2.8 years) in children with an ND-GC and to impact across multiple contexts. Children in subgroups linked to high sleep symptomatology were also at high risk of psychiatric outcomes (OR ranging from 2.0 to 21.5 depending on psychiatric condition). Our findings demonstrate that children with high genetic vulnerability for neurodevelopmental outcomes exhibit high rates of insomnia and sleep symptomatology. Sleep disruption has wide-ranging impacts on psychosocial function, and indexes those children at greater neuropsychiatric risk. Insomnia was found to onset in early childhood, highlighting the potential for early intervention strategies for psychiatric risk informed by sleep profile.


Assuntos
Transtornos do Neurodesenvolvimento , Distúrbios do Início e da Manutenção do Sono , Transtornos do Sono-Vigília , Humanos , Criança , Pré-Escolar , Distúrbios do Início e da Manutenção do Sono/diagnóstico , Distúrbios do Início e da Manutenção do Sono/genética , Medicina Estatal , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Sono-Vigília/diagnóstico , Sono
17.
Psychol Med ; 53(7): 3142-3149, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35144709

RESUMO

BACKGROUND: Copy number variants (CNVs) have been associated with the risk of schizophrenia, autism and intellectual disability. However, little is known about their spectrum of psychopathology in adulthood. METHODS: We investigated the psychiatric phenotypes of adult CNV carriers and compared probands, who were ascertained through clinical genetics services, with carriers who were not. One hundred twenty-four adult participants (age 18-76), each bearing one of 15 rare CNVs, were recruited through a variety of sources including clinical genetics services, charities for carriers of genetic variants, and online advertising. A battery of psychiatric assessments was used to determine psychopathology. RESULTS: The frequencies of psychopathology were consistently higher for the CNV group compared to general population rates. We found particularly high rates of neurodevelopmental disorders (NDDs) (48%), mood disorders (42%), anxiety disorders (47%) and personality disorders (73%) as well as high rates of psychiatric multimorbidity (median number of diagnoses: 2 in non-probands, 3 in probands). NDDs [odds ratio (OR) = 4.67, 95% confidence interval (CI) 1.32-16.51; p = 0.017) and psychotic disorders (OR = 6.8, 95% CI 1.3-36.3; p = 0.025) occurred significantly more frequently in probands (N = 45; NDD: 39[87%]; psychosis: 8[18%]) than non-probands (N = 79; NDD: 20 [25%]; psychosis: 3[4%]). Participants also had somatic diagnoses pertaining to all organ systems, particularly conotruncal cardiac malformations (in individuals with 22q11.2 deletion syndrome specifically), musculoskeletal, immunological, and endocrine diseases. CONCLUSIONS: Adult CNV carriers had a markedly increased rate of anxiety and personality disorders not previously reported and high rates of psychiatric multimorbidity. Our findings support in-depth psychiatric and medical assessments of carriers of CNVs and the establishment of multidisciplinary clinical services.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Variações do Número de Cópias de DNA/genética , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Transtornos Psicóticos/epidemiologia , Psicopatologia , Transtornos do Humor/epidemiologia , Transtornos do Humor/genética
18.
Brain ; 146(4): 1686-1696, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36059063

RESUMO

Pleiotropy occurs when a genetic variant influences more than one trait. This is a key property of the genomic architecture of psychiatric disorders and has been observed for rare and common genomic variants. It is reasonable to hypothesize that the microscale genetic overlap (pleiotropy) across psychiatric conditions and cognitive traits may lead to similar overlaps at the macroscale brain level such as large-scale brain functional networks. We took advantage of brain connectivity, measured by resting-state functional MRI to measure the effects of pleiotropy on large-scale brain networks, a putative step from genes to behaviour. We processed nine resting-state functional MRI datasets including 32 726 individuals and computed connectome-wide profiles of seven neuropsychiatric copy-number-variants, five polygenic scores, neuroticism and fluid intelligence as well as four idiopathic psychiatric conditions. Nine out of 19 pairs of conditions and traits showed significant functional connectivity correlations (rFunctional connectivity), which could be explained by previously published levels of genomic (rGenetic) and transcriptomic (rTranscriptomic) correlations with moderate to high concordance: rGenetic-rFunctional connectivity = 0.71 [0.40-0.87] and rTranscriptomic-rFunctional connectivity = 0.83 [0.52; 0.94]. Extending this analysis to functional connectivity profiles associated with rare and common genetic risk showed that 30 out of 136 pairs of connectivity profiles were correlated above chance. These similarities between genetic risks and psychiatric disorders at the connectivity level were mainly driven by the overconnectivity of the thalamus and the somatomotor networks. Our findings suggest a substantial genetic component for shared connectivity profiles across conditions and traits, opening avenues to delineate general mechanisms-amenable to intervention-across psychiatric conditions and genetic risks.


Assuntos
Conectoma , Transtornos Mentais , Humanos , Pleiotropia Genética , Imageamento por Ressonância Magnética , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Encéfalo/diagnóstico por imagem
19.
J Med Genet ; 60(7): 706-711, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36446581

RESUMO

BACKGROUND: Caring for children with pathogenic neurodevelopmental Copy Number Variants (CNVs) (ie, deletions and duplications of genetic material) can place a considerable burden on parents and their quality of life. Our study is the first to examine the frequency of psychiatric diagnoses in mothers of children with CNVs compared with the frequency of psychiatric problems in age-matched mothers from a large community study. METHODS: Case-control study. 268 mothers of children with a CNV diagnosed in a medical genetics clinic and 2680 age-matched mothers taking part in the Avon Longitudinal Study of Parents and Children study. RESULTS: Mothers of children with CNVs reported higher frequency of depression, anorexia, bulimia, alcohol abuse and drug addiction problems compared with the age-matched mothers from the community sample. Focusing on psychiatric problems arising immediately after the birth of the index child, we found that the levels of depression symptoms were similar between the two groups (48% in mothers of children with CNVs vs 44% in mothers of the community sample, p=0.43), but mothers of children with CNVs had higher frequency of anxiety symptoms (55%) compared with mothers from the community sample (30%, p=0.03). CONCLUSION: Our study highlights the need for healthcare providers to devise treatment plans that not only focus on meeting the child's needs but also assess and, if needed, address the mental health needs of the parent.


Assuntos
Transtornos Mentais , Mães , Feminino , Criança , Humanos , Mães/psicologia , Variações do Número de Cópias de DNA/genética , Estudos Longitudinais , Estudos de Casos e Controles , Qualidade de Vida , Transtornos Mentais/epidemiologia , Transtornos Mentais/genética
20.
Biol Psychiatry ; 93(1): 45-58, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372570

RESUMO

BACKGROUND: Polygenicity and genetic heterogeneity pose great challenges for studying psychiatric conditions. Genetically informed approaches have been implemented in neuroimaging studies to address this issue. However, the effects on functional connectivity of rare and common genetic risks for psychiatric disorders are largely unknown. Our objectives were to estimate and compare the effect sizes on brain connectivity of psychiatric genomic risk factors with various levels of complexity: oligogenic copy number variants (CNVs), multigenic CNVs, and polygenic risk scores (PRSs) as well as idiopathic psychiatric conditions and traits. METHODS: Resting-state functional magnetic resonance imaging data were processed using the same pipeline across 9 datasets. Twenty-nine connectome-wide association studies were performed to characterize the effects of 15 CNVs (1003 carriers), 7 PRSs, 4 idiopathic psychiatric conditions (1022 individuals with autism, schizophrenia, bipolar conditions, or attention-deficit/hyperactivity disorder), and 2 traits (31,424 unaffected control subjects). RESULTS: Effect sizes on connectivity were largest for psychiatric CNVs (estimates: 0.2-0.65 z score), followed by psychiatric conditions (0.15-0.42), neuroticism and fluid intelligence (0.02-0.03), and PRSs (0.01-0.02). Effect sizes of CNVs on connectivity were correlated to their effects on cognition and risk for disease (r = 0.9, p = 5.93 × 10-6). However, effect sizes of CNVs adjusted for the number of genes significantly decreased from small oligogenic to large multigenic CNVs (r = -0.88, p = 8.78 × 10-6). PRSs had disproportionately low effect sizes on connectivity compared with CNVs conferring similar risk for disease. CONCLUSIONS: Heterogeneity and polygenicity affect our ability to detect brain connectivity alterations underlying psychiatric manifestations.


Assuntos
Heterogeneidade Genética , Psiquiatria , Humanos , Predisposição Genética para Doença , Herança Multifatorial/genética , Encéfalo/diagnóstico por imagem , Variações do Número de Cópias de DNA/genética , Estudo de Associação Genômica Ampla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...